
Portability Issues for ECS Science
Software Integration

Narayan Prasad

EOS

NASA'S MISSION TO PLANET EARTH

EARTH OBSERVING SYSTEM

E
A

R
T

H
 P

R
O

B
E

S

D
A

T
A

 IN
F

O
R

M
A

T
IO

N
 S

Y
S

T
E

M

Science Software Integration and Test Workshop, Landover, MD
April 18, 1995

NP-1726-PP-002-001

EOS

NASA 'S M ISSIO N T O PLA NET EART H

EAR TH OB SERVING SYST EM

E
A

R
TH

 P
R

O
B

E
S

D
A

T
A

 IN
F

O
R

M
A

TIO
N

 S
Y

S
TE

M

NP-2726-PP-002-001

Major Incompatibilities

Due to:

• Complexity introduced by byte ordering

• Word size in 32- and 64-bit machines
- limitations
- differences

• Differences in operating system

• Language extensions

EOS

NASA 'S M ISSIO N T O PLA NET EART H

EAR TH OB SERVING SYST EM

E
A

R
TH

 P
R

O
B

E
S

D
A

T
A

 IN
F

O
R

M
A

TIO
N

 S
Y

S
TE

M

NP-3726-PP-002-001

Byte Ordering

Architectures
• Little-endian (Digital, MasPar, etc.) - High byte on the right
• Big-endian (HP, SGI, SUN, IBM, Cray, etc.) - High byte on the left

Implications
• For high-level source code no modification is necessary; only need

recompilation and relinking
• For data in packed binary format, need code modifications when

porting across different byte-ordered architectures
• Binary data require byte reordering

Compiler options
• DEC Alpha has a switch (for Fortran only) to convert big-endian to little-

endian and vice-versa
• No such option is available on big-endian machines to accommodate

code from little-endian architectures

EOS

NASA 'S M ISSIO N T O PLA NET EART H

EAR TH OB SERVING SYST EM

E
A

R
TH

 P
R

O
B

E
S

D
A

T
A

 IN
F

O
R

M
A

TIO
N

 S
Y

S
TE

M

NP-4726-PP-002-001

Word Size

Limitations
• Cray is word addressable (minimum is 8 bytes)

- need bitwise operators manipulating sizes less than 8 bytes (can
make porting difficult)

• SGI Power Challenge is byte addressable (minimum is 1 byte)
Differences

• differences in data type sizes (e.g. SGI Challenge and SGI Power
Challenge)
- long int, pointer (32 bits on 32-bit machines; 64 bits on 64-bit

machines)
- long double (64 bits on 32-bit machines; 128 bits on 64-bit

machines)
- integer*, real*, complex* promoted internally
- addresses on 64-bit machines are 64-bits

EOS

NASA 'S M ISSIO N T O PLA NET EART H

EAR TH OB SERVING SYST EM

E
A

R
TH

 P
R

O
B

E
S

D
A

T
A

 IN
F

O
R

M
A

TIO
N

 S
Y

S
TE

M

NP-5726-PP-002-001

Implications
• Run time errors
• Different results due to additional accuracy
• Integer variables that hold addresses may need to be changed
• Fortran-C interfaces may need modification
• Mixing implicit casts can give different results
• Adding constants (32-bit unsigned int) to long

Remedy
• Use integer*8 to store addresses on 64-bit machines
• Use #if directives for bit sensitive areas of code
• C routines called by Fortran where variables are passed by reference

must be modified to hold 64-bit addresses (no problem if pointers are
defined)

• In C, always use sizeof to get size of variables
• Always define types in Fortran and cast variables in C

Word Size (Cont.)

EOS

NASA 'S M ISSIO N T O PLA NET EART H

EAR TH OB SERVING SYST EM

E
A

R
TH

 P
R

O
B

E
S

D
A

T
A

 IN
F

O
R

M
A

TIO
N

 S
Y

S
TE

M

NP-6726-PP-002-001

Operating System

Compatibilities
• Binary compatible (an executable created on 32-bit machine can run on

64-bit machine)
• Compiler switch that forces 32-bit programs to run in 32-bit mode on 64

-bit machines (at the expense of performance)
Incompatiblities

• Cannot mix objects and Dynamic Shared Objects (DSOs) produced by
32-bit compilers with objects and DSOs produced by 64-bit compilers
or vice versa

• Access to kernal data structures (kmem) must be ported to 64-bit
environment

• IRIX GL does not yet have 64-bit support

EOS

NASA 'S M ISSIO N T O PLA NET EART H

EAR TH OB SERVING SYST EM

E
A

R
TH

 P
R

O
B

E
S

D
A

T
A

 IN
F

O
R

M
A

TIO
N

 S
Y

S
TE

M

NP-7726-PP-002-001

Language Extensions

• Project has suggested guidelines for language extensions for C and
Fortran 77

• It is best not to use extensions for better portability
• Fortran 90 interpretation may be different from that of Fortran 77 for the

following situations:
- Fortran 90 has more intrinsic functions and can cause name

collision (could be minimal)
- If a named variable is not in a common block is initialized in a DATA

statement, it has the SAVE attribute in Fortran 90
- Input record is padded with as many blanks as necessary to satisfy

the input item and the corresponding format. Not so in Fortran 77.
- Fortran 77 permits a processor to supply extra precision for a real

constant when it is used to initialize a DOUBLE PRECISION data
object in a DATA statement. Fortran 90 does not permit this.

EOS

NASA 'S M ISSIO N T O PLA NET EART H

EAR TH OB SERVING SYST EM

E
A

R
TH

 P
R

O
B

E
S

D
A

T
A

 IN
F

O
R

M
A

TIO
N

 S
Y

S
TE

M

NP-8726-PP-002-001

Tips For Creating Portable
Programs

• Keep portability in mind when developing code
• Good programming practice is essential
• Document areas in code that are bit sensitive (also use #if def)
• Avoid vendor specific extensions
• Don’t make any assumption regarding pagesize (e.g. using mmap() and

specifying the address). Use getpagesize() .
• Use POSIX compliant compilers fort77 and c89 during development
• Consult a porting and transition guide (e.g. MIPSpro 64-Bit Porting and

Transition Guide from Silicon Graphics, Inc.)
• Early prototyping can detect problem areas

